

Compromise/Balance Requirements

Plant

Target post-graze stubble heights

Grazing to the target post-graze stubble height will:

- Ensure persistence of planted/ desirable forage species
- Maintain productivity
- Prevent weed infestation

				1
Forage	Target height (inches)		Digestibility	Crude Protein
	To Start	To Stop	%	
Cool-season Cool-season				
Alfalfa	8 - 12	2 - 4	58 - 75	16 -25
Orchardgrass	6 - 8	3 - 4	55 - 65	10 - 18
Ryegrass	8 - 10	2 - 3	55 - 65	10 - 18
Small grains (oats, barley, rye, triticale, wheat)	6 - 10	2 - 3	63 - 70	9 - 15
Tall fescue	6 - 8	3 - 4	55 - 65	10 - 18
Warm-season				
Annual lespedeza (Kobe and Korean)	4 - 6	2 - 3	55 - 60	10 - 14
Bahiagrass	4 - 8	2 - 3	50 - 62	11 - 14
Bermudagrass (common, hybrid and seeded varieties)	4 - 6	2 - 3	50 - 62	11 - 14
Big Bluestem	18 - 22	5 - 7	56 - 60	8 - 12
Caucasian Bluestem	8 - 12	3 - 4	60 - 69	9 - 12
Crabgrass	4 - 8	2 - 3	60 - 78	10 - 20
Dallisgrass	4 - 8	2 - 3	50 - 62	11 - 14
Eastern gamagrass	14 - 24	6 - 8	52 - 70	8 - 15
Indiangrass	18 - 22	5 - 7	56 - 60	8 - 12
Sorghum sudangrass	18 - 24	5 - 7	68 - 78	8 - 12
Switchgrass	18 - 22	5 - 7	56 - 60	8 - 12

Plant regrowth

Herbage accumulation

Energy reserves

Stage A

Stage C

Seasonal Distribution of Growth: Cool-season forages

Seasonal Distribution of Growth: Warm-season forages

Relative growth rate (lb/ac/d)

Timing – NC example

Cool-season forage based

Warm-season forage based

Jan Feb Mar Apr MayJune July Aug Sept Oct Nov Dec

Relative growth rate (lb/ac/d)

Timing – NC example

Cool-season forage based

Warm-season forage based

Jan Feb Mar Apr MayJune July Aug Sept Oct Nov Dec

Timing

- Year-round forage productions in NC is possible using a combination of cool- and warm-season forages
- Forage production distribution curve determines areas/times
 of potential excess/shortage of forage supply
- Determine the number of animals that can be feed according to forage production and forage management recommendations to ensure persistence of the plant species

How is grazing management characterized?

- ➤ Intensity (e.g. stocking rate, pasture height or mass)
- > Frequency (e.g. rotational or continuous stocking)

What is the importance of grazing management?

Grazing management determines whether a **potentially** good forage will **actually** be a good forage.

Approach

- Provide definitions
- Discuss concepts
- Use examples from scientific literature to illustrate concepts

Question 1.

What is the impact of stocking rate or pasture height on forage quality (animal responses)?

Intensity: Stocking rate, pasture height or mass

1 acre paddock

Pasture height

1 acre paddock

Nitrogen fertilization and stocking rate affect stargrass pasture and cattle performance.

Hernandez Garay, A., L.E. Sollenberger, D.C. McDonald, G.J. Ruegsegger, and P. Mislevy. Crop Sci. 2004

- > Stargrass grazed with 1, 2, and 3 yearling bulls per acre
- Grazing cycle 28 d (21-d resting period + 7-d grazing)
- > 300 d grazing season for two years
- > N rates: 100, 200, 300 lb/acre/yr

Animal responses = quality of forage

Animal responses = quality of forage

Which stocking rate is best? What are your goals?

Animal responses = quality of forage

Question 2.

At the correct stoking density, how do animal responses compare when grazing bermudagrass and native warm-season grasses?

Steer performance and pasture productivity among five perennial warm-season grasses

Burns, J.C, and D.S. Fisher. Agron. J. 105:113-123 (2013)

- > Grasses:
 - > Gamagrass, big bluestem, switchgrass, bermudagrass
- Stocking method: continuous stocking (put and take)
- Pasture management:
 - → 3 5 in bermudagrass
 - > 8 12 in for gamagrass, switchgrass, big bluestem
- ➤ N rates: 200 lb / acre

Plant responses

Animal responses

Animal responses

Animal responses

How is grazing management characterized?

- In terms of:
 - > Timing
 - ➤ Intensity (e.g. stocking rate, pasture height or mass)
 - > Frequency (e.g. rotational or continuous stocking)

 Def.: a defined procedure or technique to manipulate animals in space and time to achieve a specific objective

 Most common methods are various forms of continuous and rotational stocking.

Stocking method

Continuous stocking

Rotational Stocking

1 acre paddock

Example

 Two rotational stocking treatments differing in # of paddocks (length of grazing period). Rest period is 21 days.

# Paddocks	4	8
Grazing period (d)	7	3

Example

 Two rotational stocking treatments differing in # of paddocks (length of grazing period). Rest period is 21 days.

# Paddocks	4	8
Grazing period (d)	7	3

What is the impact of stocking method on forage nutritive value?

NUTRITIVE VALUE

Rotational (R) vs. Continuous stocking (C)...?

- R > C
- R = C
- C > R

NUTRITIVE VALUE

Rotational (R) vs. Continuous stocking (C)...?

- R > C 21%
- R = C 71%
- C > R 8%

What is the impact of stocking method on quantity of forage?

CARRYING CAPACITY

Rotational (R) vs. Continuous stocking (C)...?

- R > C -
- R = C -
- C>R-

CARRYING CAPACITY

Rotational (R) vs. Continuous stocking (C)...?

- R > C 81%
- R = C 19%
- C > R 0%

How large an advantage? (Rotational > Continuous stocking)

Range:

Average:

How large an advantage? (Rotational > Continuous stocking)

Range: 9 – 68%

Average: 29%

Why does the difference occur?

Pasture more productive?

Pasture grazed more efficiently?

Why does the difference occur?

Pasture more productive? Yes

Pasture grazed more efficiently? Yes

If pasture is more productive then why? (Rotational > Continuous)

Greater average LAI and more favorable leaf-age profile for rotational – increases photosynthesis

Days of regrowth

Continuous stocking

Days of regrowth

Canopy Photosynthesis

Credible reasons:

- Greater average LAI and more favorable leaf-age profile for rotational increases photosynthesis
- Greater uniformity of pasture utilization increases efficiency of grazing and provides more desirable pasture conditions for regrowth

Other impacts of stocking method:

- Persistence
- Nutrient cycling
- Animal behavior

What is the impact of stocking method on plant communities (composition and vigor)?

Treatments

- Three mixtures
 - 1. Orchardgrass
 - + alfalfa

2. Orchardgrass+ white clover

3. Kentucky bluegrass, white clover, b. trefoil

Bryant et al. 1961.

Treatments

- Two Stocking methods (equal stocking rate, # animals per acre):
 - 1. Continuous
 - 2. Rotational Stocking

Mixture 1: grazed at bud stage of alfalfa to 3 in. stubble height

Mixture 2: grazed from ~9 in. tall to 2 in. stubble height

Mixture 3: grazed from ~5 in. tall to ¾ in. stubble height

	Continuous	Rotational
Herbage harvested (lb/ac)		

	Continuous	Rotational
Herbage harvested (lb/ac)	403	619

	Continuous	Rotational	
Herbage harvested (lb/ac)	403	619	
% PRESENCE IN THE PASTURE			
Alfalfa	17%	48%	
White clover	13%	19%	
Birdsfoot treefoil	<0.5%	12%	

	Continuous	Rotational
Herbage harvested (lb/ac)	403	619
% PRESENCE IN THE PASTURE		
Alfalfa	17%	48%
White clover	13%	19%
Birdsfoot treefoil	<0.5%	1 <mark>2</mark> 12%

Differences in plant growth habit

	Continuous	Rotational	
Herbage harvested (lb/ac)	403	619	
% PRESENCE IN THE PASTURE			
Alfalfa	17%	48%	
White clover	13%	19%	
Birdsfoot treefoil	<0.5%	12%	
WEEED INFESTATION			

	Continuous	Rotational	
Herbage harvested (lb/ac)	403	619	
% PRESENCE IN THE PASTURE			
Alfalfa	17%	48%	
White clover	13%	19%	
Birdsfoot treefoil	<0.5%	12%	
WEEED INFESTATION			
MIXTURE 1 (alfalfa +orchardgrass)	30%	9%	

Take-home message – grazing intensity

 Priority NUMBER ONE in any grazing system is to GET THE GRAZING INTENSITY RIGHT (i.e. stocking rate, pasture height)

 No other grazing management tool can overcome a failure to select the proper grazing intensity

Take home message – Stocking method

Rotational stocking:

- Can increase carrying capacity ~ 30% over continuous
- Not expected to increase individual animal gain if forage is not limiting
- Improves persistence of less grazing tolerant plants

Thank you...!!!

Visit us:

www.forages.ncsu.edu